

USN

Third Semester B.E. Degree Examination, June/July 2018 Electronic Circuits

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer FIVE full questions, selecting atleast TWO questions from each part.
2. Missing data, if any, may be suitably assumed.

PART - A

1 a. Example the concept of thermal Runaway in bipolar-junction transistors. (05 Marks)

b. Calculate the values of the resistors R_C and R_E for the circuit shown in Fig.Q1(b) given that $R_1 = 5k\Omega$, $R_2 = 1k\Omega$, $\beta = 200$, $V_{CC_Q} = 5V$ and $I_{C_Q} = 2mA$. (assume silicon transistor and $I_1 >> I_B$).

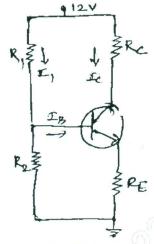


Fig.Q1(b)

c. Briefly discuss the DC analysis and load line – analyses for the self bias configuration.

(07 Marks)

2 a. Determine the value of operating point for the circuit shown in Fig.Q2(a) given that threshold voltage for the MOSFET is 2V and $I_{D(ON)} = 6mA$, for $V_{GS(ON)} = 5V$. (08 Marks)

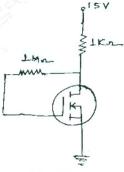


Fig.Q2(a)

b. Explain with neat sketches the operation and characteristics of CMOS devices.

(07 Marks)

c. Write short note on handling of MOSFETS.

(05 Marks)

- a. Explain with neat diagrams the working operation types characteristics and parameters of Liquid Crystal Display Devices [LCD]. (10 Marks)
 - b. Briefly discuss with necessary diagrams the basic operation of opto-couplers. (05 Marks)
 - c. A photodiode has a noise current of 1fA responsivity figure of 0.5A/W calculate its noise equivalent power and detectivity. (05 Marks)
- a. Draw the hybrid equivalent circuit of the transistor in all three configurations given that the hybrid parameters for the transistor are $h_{ie} = 1.5 k\Omega$, $h_{fe} = 150$, $h_{re} = 1 \times 10^{-4}$ and $h_{oe} = 20$ μmhos.
 - b. What are cascade amplifiers? What are the advantages on overall frequency response of the amplifier? (05 Marks)
 - c. Explain the effect of coupling and by pass capacitors on the low frequency response of the transistor based amplifier [SMPS]. (05 Marks)

PART - B

- 5 a. What are power amplifiers? How are they classified into different classes depending upon their mode of operation? (06 Marks)
 - b. A class B amplifier provides a 20V peak output signal to 15Ω load. The system operates on a power supply of 25V. Determine the efficiency of the amplifier (08 Marks)
 - c. The total harmonic distortion of an amplifier reduces from 10% to 1% on introduction of 10% negative feedback. Determine the open loop and closed loop gain values. (06 Marks)
- a. Explain how RC and RL circuit acts as integrator and differentiator. (08 Marks)
 - b. With a neat circuit diagram, explain the working operation of voltage-controlled oscillator.
 (06 Marks)
 - c. What are multi-vibrators? Discuss briefly the principle of operation of a stable multi-vibrator with respect to IC 555. (06 Marks)
- 7 a. A regulated power supply provides a ripple rejection of -80db. If the ripple voltage in the unregulated input were 2V. Determine the output ripple (06 Marks)
 - b. Explain with neat diagram and relevant waveforms the working operation of Boost switching voltage regulator. (08 Marks)
 - c. Briefly discuss the important features and parameters of switched mode power supplies.

 (06 Marks)
- 8 a. Fig.Q8(a) shows a second order low pass filter built around a single Op Amp. Calculate the values of R₁, R₂, C₁, C₂ and R₃. If the filter had a cut off frequency of 10KHz Q-factor of 0.707 and input impedance not less than 10KΩ.

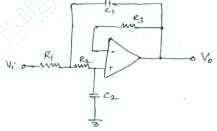


Fig.Q8(a)

- b. What is an absolute value circuit? Draw the circuit schematic of one such circuit configured around Op-Amp and briefly describe its functional principle. (08 Marks)
- c. Discuss briefly the performance parameters and applications of Op-Amps. (04 Marks)